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In this document, we present key findings in structured matrix approximation theory, with applications to the regressive
representation of dynamic financial processes. Initially, we explore a comprehensive approach involving generic
nonlinear time delay embedding for time series data extracted from a financial or economic system under examination.
Subsequently, we employ sparse least-squares and structured matrix approximation methods to discern approximate
representations of the output coupling matrices. These representations play a pivotal role in establishing the regressive
models corresponding to the recursive structures inherent in a given financial system. The document further introduces
prototypical algorithms that leverage the aforementioned techniques. These algorithms are demonstrated through
applications in approximate identification and predictive simulation of dynamic financial and economic processes,
encompassing scenarios that may or may not exhibit chaotic behavior.

The intricate dynamics inherent in financial processes of-
ten pose challenges for accurate modeling and prediction.
Nonetheless, the synergy of sparse representation tech-
niques with Nonlinear Regressive Reservoir Computers
(NRRCs) proves advantageous in modeling financial pro-
cesses dynamics. Firstly, this approach excels in capturing
the intricate nonlinear dynamics of financial data. NR-
RCs, adept at modeling complex relationships between
input and output data, coupled with sparse representa-
tion, effectively identify the key dynamic components, en-
suring more accurate and precise modeling of underly-
ing dynamics. Secondly, the methodology promotes effi-
cient data utilization. NRRCs, capable of learning from
a relatively small dataset, align well with the limited
scope and complexity of financial processes data. By pin-
pointing crucial variables, the approach enhances mod-
eling efficiency, conserving time and resources. Thirdly,
the approach exhibits flexibility and adaptability. NR-
RCs swiftly respond to changing conditions, making them
ideal for the dynamic nature of financial processes. The
amalgamation of NRRCs with sparse representation fa-
cilitates the identification of changes in the underlying
structure, enabling prompt adjustments to the model. In
conclusion, integrating sparse representation techniques
with time series models employing nonlinear regressive
reservoir computers yields several advantages for finan-
cial processes dynamics modeling. It ensures accurate
modeling of complex dynamics, optimizes data utilization,
and provides adaptability to evolving conditions.
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I. INTRODUCTION

Regressive models and reservoir computers are robust
computational tools for the identification and simulation of
financial and economic systems2. In recent years, a new class
of architectures, termed next-generation reservoir computers,
has emerged7. In this study, we delve into the intrinsic net-
work architecture associated with these reservoir computers,
which significantly contribute to data dimensionality reduc-
tion. This architecture also facilitates the parametric iden-
tification processes by leveraging the matrix structural con-
straints induced by the network architecture. The document
outlines key aspects of the theory and algorithms pertaining
to the computation of specific types of regressive reservoir
computers. The focus of this study is on reservoir comput-
ers, the architecture of which can be approximated by either
linear or nonlinear regressive vector models.

The main contribution of the work reported in this doc-
ument is the application of collaborative schemes involving
structured matrix approximation methods, together with lin-
ear and nonlinear regressive models, to the simulation of dy-
namic financial processes. Some theoretical aspects of the
aforementioned methods are described in §III. As a byprod-
uct of the work reported in this document, a toolset of Python
programs for financial and economic dynamic models identi-
fication based on the ideas presented in §III and §IV has been
developed and is available in15.

Even though, the applications of the structure preserv-
ing function approximation technology developed as part
of the work reported in this document can range from nu-
merical modeling of cyber-physical systems16, to climate
simulation10. We will focus on applications to financial pro-
cesses identification in this paper.

Financial processes have become complex systems where
several dynamic entities constantly communicate and affect
each other. Hence, the financial processes identification has
become a critical aspect of modern finance. The identified
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models can become a helpful tool for institutions to analyze
and predict financial trends, manage risk, and make informed
investment decisions (Bodie et al., 2014). However, the com-
plexity and uncertainty of financial markets make these tasks
challenging. Financial processes often exhibit nonlinear and
complex behavior, which makes it difficult to model and iden-
tify the underlying dynamics (Cont, 2001). Traditional linear
models may fail to capture the intricate relationships between
variables, leading to inaccurate predictions and suboptimal
decision-making.

Despite the challenges posed by the factors described
above, data quality, and market efficiency, machine learning
techniques offer promising solutions for improving the accu-
racy and utility of financial models. Machine learning has
been used to identify the relationship between the key finan-
cial ratios that characterize a firm’s financial position. For in-
stance, Dixon, Klabjan, and Bang’s5 work applies deep learn-
ing to predict financial market movements. The authors use
a classification approach to predict financial market move-
ments. Their findings suggest that deep learning algorithms
can provide valuable insights and predictions about finan-
cial market movements, outperforming traditional methods.
Sirignano and Cont13 propose a deep learning model to iden-
tify the dynamics of price formation of a high-frequency limit
order book. Their model was able to capture universal fea-
tures of price formation across different markets, highlighting
the potential of machine learning to model complex financial
systems.

Overall, the recent literature suggests that machine learn-
ing has significant potential in modeling financial data. These
techniques are increasingly utilized to capture complex pat-
terns, make accurate predictions, and optimize decision-
making in the financial domain. However, it is still an open
issue to be investigated. In this scenario, this work also con-
tributes to the field of financial data identification by apply-
ing the proposed tools in this context leading to a better un-
derstanding of the underlying financial processes addressed
here.

A prototypical algorithm for the computation of sparse
structured recursive models based on the ideas presented in
§III, is presented in §IV. Some numerical simulations of
financial processes based on the prototypical algorithm pre-
sented in §IV are documented in §V.

II. PRELIMINARIES AND NOTATION

The symbols R+ and Z+ will be used to denote the positive
real numbers and positive integers, respectively. For any pair
p,n∈Z+ the expression dp(n) will denote the positive integer
dp(n) = n(np − 1)/(n− 1)+ 1. Given δ > 0, let us consider
the function defined by the expression

Hδ (x) =
{

1, x > δ

0, x ≤ δ
.

Given a matrix A ∈ Cm×n with singular values8 (§2.5.3) de-
noted by the expressions s j(A) for j = 1, . . . ,min{m,n}. We

will write rkδ (A) to denote the number

rkδ (A) =
min{m,n}

∑
j=1

Hδ (s j(A)).

For a nonzero matrix A ∈ Rm×n, the symbol A+ will be used
to denote the pseudoinverse8 (§5.5.4) of A.

Given a scalar time series Σ = {x(t)}t≥1 ⊂ Rn, a positive
integer L and any t ≥ L, we will write xL(t) to denote the
vector

xL(t) =
[
xL(t)[1]⊤ xL(t)[2]⊤ · · · xL(t)[n]⊤

]⊤ ∈ RnL,

with

xL(t)[ j] =


x(t −L+1)[ j]
x(t −L+2)[ j]

...
x(t −1)[ j]

x(t)[ j]

 ∈ RL

for 1 ≤ j ≤ n, where x(s)[ j] denotes the scalar j-component
of each element x(s) in the vector time series Σ, for s ≥ 1.

The identity matrix in Rn×n will be denoted by In, and we
will write ê j,n to denote the matrices in Rn×1 representing the
canonical basis of Rn (each ê j,n corresponds to the j-column
of In). For any vector x ∈ Rn, we will write ∥x∥ to denote the
Euclidean norm of x. Given a matrix X ∈ Rm×n, the expres-
sion ∥X∥F will denote the Frobenius norm of X .

For any integer n > 0, in this article, we will identify the
vectors in Rn with column matrices in Rn×1.

Given two matrices A ∈ Rm×n, B ∈ Rp×q, the tensor Kro-
necker tensor product A⊗B ∈ Rmp×nq is determined by the
following operation.

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB


For any integer p> 0 and any matrix X ∈Rm×n, we will write
X⊗p to denote the operation determined by the following ex-
pression.

X⊗p =

{
X , p = 1
X ⊗X⊗(p−1) , p ≥ 2

We will also use the symbol Πp to denote the operator Πp :
Rn →Rnp

that is determined by the expression Πp(x) := x⊗p,
for each x ∈ Rn. Given two matrices X = [xi, j], Y = [yi, j] in
Rm, we will write X ⊙Y to denote the operation correspond-
ing to their Hadamard product X ⊙Y :=

[
xi, jyi, j

]
∈ Rm.

For any matrix A ∈ Rm×n, we will denote by colsp(A) the
columns space of the matrix A. Given a list A1,A2, . . . ,Am
such that for 1 ≤ j ≤ m, A j ∈ Rn j×n j for some integer n j >
0. The expression A1 ⊕A2 ⊕ ·· ·⊕Am will denote the block
diagonal matrix

A1 ⊕A2 ⊕·· ·⊕Am =


A1

A2
. . .

Am

 ,
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where the zero matrix blocks have been omitted.
In this article, we will use the following notion of sparse

representation. Given δ > 0 and two matrices A ∈ Rm×n and
X ∈ Rn×p, a matrix X̂ ∈ Rn×p is an approximate sparse rep-
resentation of X with respect to A, or a sparse representation
of X for short, if ∥X̂A−XA∥F ≤Cδ for some C > 0 that does
not depend on δ , and X̂ has fewer nonzero entries than X .

We will write S1 to denote the set {z ∈ C : |z|= 1}. Given
any matrix X ∈ Rm×n, we will write X⊤ to denote the trans-
pose X⊤ ∈ Rn×m of X . A matrix P ∈ Cn×n will be called an
orthogonal projector whenever P2 = P = P⊤. Given any ma-
trix A ∈ Rn×n, we will write Λ(A) to denote the spectrum of
A, that is, the set of eigenvalues of A.

III. STRUCTURED DYNAMIC TRANSFORMATION
MODEL IDENTIFICATION

Given two discrete-time dynamic systems determined by
two time series {x(t)}t≥1 and {y(t)}t≥1, respectively. We will
study the identification process of maps determined by the
expression

y(t) = F (x(t))+ r(t), (III.1)

where {r(t)}t≥1 denotes the sequence of residual errors de-
termined for each t ≥ 1 by r(t) := ∥x(t)−F (x(t))∥ for some
suitable norm ∥ · ∥.

A. Low-rank approximation and sparse linear least squares
solvers

In this section, some low-rank approximation methods
with applications to the solution of sparse linear least squares
problems are presented.

Definition III.1. Given δ > 0 and a matrix A∈Cm×n, we will
write rkδ (A) to denote the nonnegative integer determined by
the expression

rkδ (A) =
min{m,n}

∑
j=1

Hδ (s j(A)),

where the numbers s j(A) represent the singular values corre-
sponding to an economy-sized singular value decomposition
of the matrix A.

Lemma III.2. We will have that rkδ

(
A⊤)= rkδ (A) for each

δ > 0 and each A ∈ Cm×n.

Proof. Given an economy-sized singular value decomposi-
tion

U


s1(A)

s2(A)
. . .

smin{m,n}(A)

V = A

we will have that

V⊤


s1(A)

s2(A)
. . .

smin{m,n}(A)

U⊤ = A⊤

is an economy-sized singular value decomposition of A⊤.
This implies that

rkδ

(
A⊤
)
=

min{m,n}

∑
j=1

Hδ (s j(A)) = rkδ (A)

and this completes the proof.

Lemma III.3. Given δ > 0 and A ∈ Cm×n we will have that
rkδ (A)≤ rk(A).

Proof. We will have that rk(A) = ∑
min{m,n}
j=1 H0(s j(A)) ≥

∑
min{m,n}
j=1 Hδ (s j(A)) = rkδ (A). This completes the proof.

Theorem III.4. Given δ > 0 and y,x1, . . . ,xm ∈ Cn, let

X =

 | | |
x1 x2 · · · xm
| | |

 .
If rkδ (X) > 0 and if we set r = rkδ (X) and sn,m(r) =√

r(min{m,n}− r) then, there are a rank r orthogonal pro-
jector Q, r vectors x j1 , . . . ,x jr ∈ {x1, . . . ,xm} and r scalars
c1 . . . ,cr ∈ C such that ∥X − QX∥F ≤ (sn,m(r)/

√
r)δ , and

∥y−∑
r
k=1 ckx jk∥ ≤

(
∑

r
k=1 |ck|2

) 1
2 sn,m(r)δ +∥(In −Q)y∥.

Proof. Let us consider an economy-sized singular value de-
composition USV = A. If u j denotes the j-column of U , let
Q be the rank r = rkδ (A) orthogonal projector determined by
the expression Q = ∑

r
j=1 u ju∗j . It can be seen that

∥X −QX∥2
F =

min{m,n}

∑
j=r+1

s j(X)2

≤ (min{m,n}− r)δ 2 =
sn,m(r)2

r
δ

2.

Consequently, ∥X −QX∥F ≤ sn,m(r)√
r δ .

Let us set.

X̂ =

 | | |
x̂1 x̂2 · · · x̂m
| | |

= QX

X̂y =

 | | | |
x̂1 x̂2 · · · x̂m ŷ
| | | |

= Q
[
X y

]
Since by lemma III.3 rk(X) ≥ rkδ (X), we will have
that rk(X̂) = r = rkδ (X) > 0, and since we also have
that x̂1, . . . , x̂m, ŷ ∈ span({u1, . . . ,ur}), there are r lin-
early independent x̂ j1 , . . . , x̂ jr ∈ {x̂1, . . . , x̂m} such that



4

span({u1, . . . ,ur}) = span({x̂ j1 , . . . , x̂ jr}), this in turn im-
plies that ŷ ∈ span({x̂ j1 , . . . , x̂ jr}) and there are c1, . . . ,cr ∈ C
such that ŷ = ∑

r
k=1 ckx̂ jk . It can be seen that for each z ∈

{x1, . . . ,xm}

∥z−Qz∥ ≤ ∥X −QX∥F ≤
sn,m(r)√

r
δ ,

and this in turn implies that∥∥∥∥∥y−
r

∑
k=1

ckx jk

∥∥∥∥∥=
∥∥∥∥∥y−

r

∑
k=1

ckx jk −

(
ŷ−

r

∑
k=1

ckx̂ jk

)∥∥∥∥∥
=

∥∥∥∥∥y−
r

∑
k=1

ckx jk −Q

(
y−

r

∑
k=1

ckx jk

)∥∥∥∥∥
≤

(
r

∑
k=1

|ck|2
) 1

2

sn,m(r)δ +∥(In −Q)y∥.

This completes the proof.

As a direct implication of theorem III.4 one can obtain the
following corollary.

Corollary III.5. Given δ > 0, A ∈ Cm×n and y ∈ Cm.
If rkδ (A) > 0 and if we set r = rkδ (A) and sn,m(r) =√

r(min{m,n}− r) then, there are x ∈ Cn and a rank r or-
thogonal projector Q that does not depend on y, such that
∥Ax− y∥ ≤ ∥x∥sn,m(r)δ + ∥(Im −Q)y∥ and x has at most r
nonzero entries.

Proof. Let us set x = 0n,1 and a j = Aê j,n for j = 1, . . . ,n.
Since r = rkδ (A) > 0 and sn,m(r) =

√
r(min{m,n}− r), by

theorem III.4 we will have that there is a rank r orthogo-
nal projector Q such that ∥A−QA∥F ≤ (sn,m(r)/

√
r)δ , and

without loss of generality r vectors a j1 , . . . ,a jr ∈ {a1, . . . ,an}
and r scalars c1 . . . ,cr ∈ C with j1 ≤ j2 ≤ ·· · ≤ jr (reorder-
ing the indices jk if necessary), such that ∥y−∑

r
k=1 cka jk∥ ≤(

∑
r
k=1 |ck|2

) 1
2 sn,m(r)δ + ∥(Im − Q)y∥. If we set x jk = ck

for k = 1, . . . ,r, we will have that ∥x∥ =
(
∑

r
k=1 |ck|2

) 1
2 and

Ax = ∑
r
k=1 x jk a jk = ∑

r
k=1 cka jk . Consequently, ∥Ax − y∥ ≤

∥x∥sn,m(r)δ +∥(Im −Q)y∥. This completes the proof.

The results and ideas presented in this section can be trans-
lated into a sparse linear least squares solver algorithm de-
scribed by algorithm A.1 in §IV.

B. Sparse structured nonlinear regressive model
identification

Given time series data sets Σx = {x(t)}t≥1 and Σy =
{y(t)}t≥1 in Rn corresponding to the orbits of two discrete-
time dynamic financial systems of interest, let us consider the
problem of identifying a map T relating the time series data
according to the expression

y(t) = T (x(t))+ r(t), (III.2)

where r(t) is some suitable small residual term defined as
in (III.1). One may need to preprocess the time series data

before proceeding with the approximate representation of a
suitable evolution operator. For this purpose, given some pre-
scribed suitable integer L > 0, one can consider the time se-
ries DL(Σx) and DL(Σy) determined by the expressions.

DL(Σx) = {xL(t)}t≥L

DL(Σy) = {yL(t)}t≥L

For the dilated time series DL(Σx) and DL(Σy), the identifi-
cation process corresponding to the relation (III.20), can be
translated into the approximate solution of equations of the
form

yL(t) = T̃ (xL(t)), (III.3)

for t ≥ L. Where T̃ is the mapping to be approximately iden-
tified.

For any p ≥ 1, let us consider the map ðp : Rn → Rdp(n)

for dp(n) = n(np − 1)/(n− 1)+ 1, that is determined by the
expression.

ðp(x) :=


Π1(x)
Π2(x)

...
Πp(x)

1

=


x⊗1

x⊗2

...
x⊗p

1

 (III.4)

Given integers p,L > 0, and two orbits Σx = {xt}t≥1 and
Σy = {yt}t≥1 in Rn, corresponding to two related dynamic
financial processes of interest. For finite samples Σx

N =
{xt}T

t=1 ⊂ Σx and Σ
y
N = {yt}T

t=1 ⊂ Σy, let us consider the ma-
trices:

H(0,p)
L (Σx

T ) =
[
ðp(xL(L)) · · · ðp(xL(T ))

]
(III.5)

H(1)
L (Σy

T ) =
[
yL(L) · · · yL(T )

]
The mapping identification mechanism used in this study

for dilated systems of the form (III.3), will be approximately
described by the expression:

yL(t) = T̂ (xL(t)) =Wðp(xL(t)), t ≥ L, (III.6)

for some matrix W ∈Rn×dp(n) to be determined, with dp(n) =
n(np−1)/(n−1)+1. Applying the techniques and ideas pre-
viously presented in this section, the matrix W in (III.6) can
be estimated by approximately solving the matrix equation

WH(0,p)
L (Σx

T ) = H(1)
L (Σy

T ). (III.7)

The devices described by (III.6) are called regressive reser-
voir computers (RRC) in this paper.

For any given integers L,n, p > 0. Taking advantage of
the maps ðp, one can find an integer 0 < rp(n) < dp(n) to-
gether with a sparse matrix Rp,L(n) ∈ Rrp(n)×dp(n), such that
Rp,L(n)+Rp,L(n)ðp(x)≈ ðp(x) for x ∈ RnL. The existence of
the pair rp(n),Rp,L(n) is determined by the following theo-
rem.

Theorem III.6. Given ε ∈ R+ and L,n, p ∈ Z+. There
are an integer 0 < ρp(n) < dp(n) and a sparse matrix
Rp,L(n) ∈ Rρp(n)×dp(n) with dp(n) nonzero entries, such that
∥Rp,L(n)+Rp,L(n)ðp(x)− ðp(x)∥ ≤

√
dp(nL)ε for each x ∈

RnL.
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Proof. Let us consider the symmetric group SnL−1 on nL−1
letters, and let us consider any finite set of distinct points
{x̂1, ..., x̂nL, x̂nL+1} ⊂ R such that for each 1 ≤ m ≤ p and ev-
ery pair on index sets {i1, . . . , im},{ j1, . . . , jm} ⊂ {1, . . . ,nL+
1}:

m

∏
k=1

x̂ jk =
m

∏
k=1

x̂ik ,⇔ ∃σ ∈SnL−1 : ik = σ( jk), ∀1 ≤ k ≤ m.

(III.8)
That is, the previously considered products coincide if and
only if, the index set {i1, . . . , im} is a permutation of the set
{ j1, . . . , jm}, for each 1 ≤ m ≤ p.

One can choose a suitable scale factor ν > 0, and we can
now set y = ν

[
x̂1 x̂2 · · · x̂nL

]⊤, d = dp(n) and

x̃ =
[
x̃1 · · · x̃d

]⊤ := ðp (y) . (III.9)

If in addition we consider the following assignments:

x̃d := x̂nL+1,

R = e⊤1,d .

Then, by (III.4), (III.8) and (III.9) for each j = 2, . . . ,d one
can find 1 ≤ k1( j), . . . ,kn j( j)≤ d such that

|x̃ j − x̃km( j)| ≤ ε (III.10)

for every 1 ≤ m ≤ n j. Consequently, if we set R0 :=
(1/n j)∑

n j
l=1 êT

kl( j),d and

R :=
[

R
R0

]
,

whenever k1( j) = j; after iterating on this procedure for 2 ≤
j ≤ d, we can define Rp,L(n) := R and we can set the value of
ρp(n) as the number of rows of Rp,L(n).

From the definition of Rp,L(n), it can be seen that
Rp,L(n)Rp,L(n)T is a diagonal matrix in Rρp(n)×ρp(n) deter-
mined by the following expression.

Rp,L(n)Rp,L(n)⊤ =



1
n̂1

0 · · · · · · 0

0 1
n̂2

. . .
...

...
. . .

. . .
. . .

...
...

. . . 1
n̂ρp(n)−1

0

0 · · · · · · 0 1
n̂ρp(n)


(III.11)

Here, for 1 ≤ j ≤ ρp(n), each n̂ j is equal to the number of
nonzero entries in the i-th row of Rp,L(n). Furthermore, we
will have that n̂ j ≥ 1 for each 1 ≤ j ≤ ρp(n), since by (III.10)
each row of Rp,L(n) has at least one nonzero entry.

By (III.11) and from the definition of Rp,L(n), it can be
seen that Rp,L(n)Rp,L(n)⊤ is invertible, and that the Moore-
Penrose pseudoinverse Rp,L(n)+ of Rp,L(n) is determined by
the expression:

Rp,L(n)+ = Rp,L(n)⊤
(

Rp,L(n)Rp,L(n)⊤
)−1

(III.12)

=
[
ê1,d ∑

n2
l=1 êkl(2),d · · · ∑

nr−1
l=1 êkl(r−1),d êd,d

]

with r = ρp(n).
Given x ∈ RnL. Based on the structure of Rp,L(n) deter-

mined by the constructive procedure used for its computation,
it can be verified that for each 1 ≤ j ≤ dp(n):

|(Rp,L(n)+Rp,L(n))ðp(x))[ j]−ðp(x)[ j]| ≤ 2ε

Consequently,

∥Rp,L(n)+Rp,L(n)ðp(x)−ðp(x)∥ ≤ 2
√

dp(n)ε.

This completes the proof.

In order to reduce to computational effort corresponding to
the solution of (III.7), using the matrix Rp,L(n) described by
Theorem III.6, one can obtain an approximate reduced repre-
sentation of (III.7) determined by the expression.

W̄Rp,L(n)H
(0,p)
L (Σx

T ) = H(1)
L (Σy

T ) (III.13)

The architecture of the regressive reservoir computers con-
sidered in this study was inspired by next generation reservoir
computers7.

Schematically, the regressive models considered in this
study can be described by a block diagram of the form,

W

ΠΠΠ1

ΠΠΠ2

...

ΠΠΠp

ŷL(t)
...

xL(t)

(III.14)
where for each t ≥ L, the block W is determined by the ex-
pression

W(Π1(xL(t)), . . . ,Πp(xL(t))) := W̃

Π1(xL(t))
...

Πp(xL(t))

+ cW

=
[
W̃ cW

]
ðp (xL(t))

and where the matrix W =
[
W̃ cW

]
is determined by (III.7).

The structure of the generic block W ub (III.14) can be
factored in the form

ŴR
y(t)ðp(xL(t)) ŷL(t)

(III.15)
The layers R and Ŵ of the device (III.15) are determined by
the expressions

R(x) = R̂x,

Ŵ(y) =Wy
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for any pair of suitable vectors x,y. Where W is a sparse
representation of an approximate solution to (III.13) and R̂ is
determined by Theorem III.6.

Using the reservoir computer models described by (III.6),
(III.14) and (III.15), we can compute approximate representa-
tions of the mappings that satisfy (III.3) using the expression

T̂ (xL(t)) := K̂
(
Ŵ◦R◦ðp(xL(t)

)
= K̂WR̂ðp (xL(t))) , (III.16)

for each t ≥ L, with

K̂ =


ê⊤1,nL

ê⊤L+1,nL
...

ê⊤(n−1)L+1,nL

 .
Furthermore, we can use the identified RRC model T̂ to sim-
ulate the behavior yt = T (xt) of the system described by
(III.20) for L ≤ t ≤ τ , by performing the operation:

T(xL(t)) := K̂T̂ (xL(t)) = K̂Wðp (xL(t))) , (III.17)

for some suitable τ > 0.

Theorem III.7. Given δ > 0, two integers p,L > 0, a sam-
ple ΣT = {xt}T

t=1 from a dynamic financial system’s orbit
Σ = {xt}t≥1 ⊂ Rn with T > L, and a matrix solvent W̄ ∈
RnL×rp(nL) of (III.13) with Rp,L(n) and rp(n) determined by
Theorem III.6. If r = rkδ (Rp,L(n)H

(0,p)
L (ΣT ))> 0, then there

is a sparse representation Ŵ ∈ RnL×ρp(nL) of W̄ with at most
rρp(nL) nonzero entries such that

∥ŴRp,L(n)H
(0,p)
L (ΣT )−W̄Rp,L(n)H

(0,p)
L (ΣT )∥F ≤ Kδ ,

(III.18)
for K =

√
nL(min{ρp(nL),T −L}− r)(

√
r∥Ŵ∥F + ∥W̄∥F),

where ρp(nL) is the integer described by Theorem III.6.

Proof. Let us set H = Rp,L(n)H
(0,p)
L (ΣT )

⊤ and Y = HW̄⊤.
It suffices to prove that there is a sparse representation Ŵ ∈
RnL×ρp(nL) with at most rρp(nL) nonzero entries such that

∥HŴ⊤−Y∥F ≤ Kδ .

Since we have that

rkδ (H) = rkδ

((
Rp,L(n)H

(0,p)
L,G (ΣT )

)⊤)
= rkδ (Rp,L(n)H

(0,p)
L (ΣT ))> 0

by Lemma III.2. By Corollary III.5, if we set r = rkδ (H)

and α =
√

r(min{ρp(nL),T −L}− r). We will have that
there is a rank r orthogonal projector Q such that for each
j = 1, . . . ,nL, there is v̂ j ∈RnL with at most r nonzero entries,
for which ∥Hv̂ j −Y ê j,M∥ ≤ α∥v̂ j∥δ + ∥(IT−L − Q)Y ê j,nL∥.
Consequently, if we set

Ŵ =

 | |
v̂1 · · · v̂nL
| |

⊤

we will have that Ŵ has at most nrL nonzero entries and

∥HŴ⊤−Y∥2
F =

nL

∑
j=1

∥Hv̂ j −Y ê j,nL∥2

≤ M(α∥Ŵ∥F δ +∥(IT−L −Q)Y∥F)
2,

and this in turn implies that,

∥HŴ⊤−Y∥F ≤
√

nL(α∥Ŵ∥F δ +∥(IT−L −Q)H∥F∥W̄∥F).
(III.19)

By (III.19) and by Theorem III.4 we will have that

∥HŴ⊤−Y∥F ≤
√

nL(α∥Ŵ∥F δ +(α/
√

r)∥W̄∥F δ )

= α
√

(nL/r)(
√

r∥Â∥F +∥A∥F)δ = Kδ .

This completes the proof.

1. Sparse structured nonlinear autoregressive model
identification

Given some time series data Σ ⊂ Rn corresponding to an
orbit determined by the difference equation

x(t +1) = A (x(t)), (III.20)

for some discrete-time dynamic financial model (Σ̂ΣΣ,T ) to be
identified. One can use the methods presented in §III B to
identify the mapping S , by considering the RRC model iden-
tification determined by the problem

y(t) = A (x(t)),

for the time series Σx := {x(t)}t≥1 and Σy := {y(t)}t≥1 in Rn,
with y(t) := x(t +1) for each t ≥ 1.

IV. ALGORITHMS

The sparse model identification methods presented in
§III A can be translated into prototypical algorithms that will
be presented in this section, some programs for data reading
and writing, synthetic signals generation, and predictive sim-
ulation are also included as part of the DyNet tool-set avail-
able in15.

A. Sparse linear least squares solver and structured
assembling matrix identification algorithms

As an application of the results and ideas presented in
§III A one can obtain a prototypical sparse linear least squares
solver algorithm like algorithm A.1.

The least squares problems c = argminĉ∈CK ∥Âĉ−y∥ to be
solved as part of the process corresponding to algorithm A.1
can be solved with any efficient least squares solver avail-
able in the language or program where the sparse linear least
squares solver algorithm is implemented. For the Python ver-
sion of algorithm A.1 the function lstsq is implemented.
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Algorithm A.1 SLRSolver: Sparse linear least squares
solver algorithm

Data: A ∈ Cm×n, Y ∈ Cm×p, δ > 0, N ∈ Z+, ε > 0
Result: X = SLRSolver(A,Y,δ ,N,ε)

1. Compute economy-sized SVD USV = A

2. Set s = min{m,n}
3. Set r = rkδ (A)

4. Set Uδ = ∑
r
j=1 Uê j,sê∗j,s

5. Set Tδ = ∑
r
j=1(ê

∗
j,sSê j,s)

−1ê j,sê∗j,s
6. Set Vδ = ∑

r
j=1 ê j,sê∗j,sV

7. Set Â =U∗
δ

A

8. Set Ŷ =U∗
δ

Y

9. Set X0 =V ∗
δ

Tδ Ŷ

10. for j = 1, . . . , p do
Set K = 1
Set error = 1+δ

Set c = X0ê j,p
Set x0 = c
Set ĉ =

[
ĉ1 · · · ĉn

]⊤
=
[
|ê∗1,nc| · · · |ê∗n,nc|

]⊤
Compute permutation σ : {1, . . . ,n} → {1, . . . ,n} such
that: ĉσ(1) ≥ ĉσ(2) ≥ ·· · ≥ ĉσ(n)

Set N0 = max
{

∑
n
j=1 Hε

(
ĉσ( j)

)
,1
}

while K ≤ N and error > δ do
Set x = 0n,1

Set A0 = ∑
N0
j=1 Âêσ( j),nê∗j,N0

Solve c = argminc̃∈CN0 ∥A0c̃− Ŷ ê j,p∥

for k = 1, . . . ,N0 do
Set xσ(k) = ê∗k,N0

c
end for
Set error = ∥x− x0∥∞

Set x0 = x
Set ĉ =

[
ĉ1 · · · ĉn

]⊤
=
[
|ê∗1,nx| · · · |ê∗n,nx|

]⊤
Compute permutation σ : {1, . . . ,n} → {1, . . . ,n}
such that: ĉσ(1) ≥ ĉσ(2) ≥ ·· · ≥ ĉσ(n)

Set N0 = max
{

∑
n
j=1 Hε

(
ĉσ( j)

)
,1
}

Set K = K +1
end while
Set x j = x

11. end for

12. Set X =

 | | |
x1 x2 · · · xp
| | |


return X

In this section, we focus on the applications of the struc-
tured matrix approximation methods presented in SIII, to dy-
namical financial systems identification via regressive reser-
voir computers.

Algorithm A.2 Compression matrix computation algorithm

Data: n, p,L ∈ Z+, ν ,ε ∈ R+.
Result: COMPRESSION MATRIX FACTOR: Rp,L(n)

1. Choose nL pseudorandom numbers x̂1, . . . , x̂nL ∈ R from
N(0,1)

2. Set y = ν
[
x̂1 x̂2 · · · x̂nL

]⊤
3. Set d = dp(n)

4. Set x̃ =
[
x̃1 · · · x̃d

]⊤ := ðp (y)
5. Choose a pseudorandom number α ∈ N(0,1);

6. Set x̃d := α

7. Set R = e⊤1,d
8. for j = 2, . . . ,d do

Find 1≤ k1, . . . ,kn j ≤ d such that |x̃ j− x̃km | ≤ ε , for each
1 ≤ m ≤ n j
if k1 = j then

Set R0 := (1/n j)∑
n j
l=1 êT

kl ,d

Set R :=
[

R
R0

]
end if

9. end for
10. Set Rp,L(n) := R

return Rp,L(n)

B. Structured coupling matrix identification algorithm

Given a discrete-time dynamic financial model (Σ,T ) and
a structured data sample ΣT ⊂ Σ, we can apply Algorithm A.2
and Algorithm A.1, in order to compute the output coupling
matrix that can be used to obtain an approximate representa-
tion of the evolution operator T , corresponding to the orbit
Σ. For this purpose, one can use the following Algorithm.

V. NUMERICAL SIMULATIONS AND APPLICATIONS

In this section, we will present some numerical simulations
computed using the DyNet toolset available in15, which was
developed as part of this project. The toolset consists of a
collection of Python 3.10.4 programs for structured sparse
identification and numerical simulation of discrete-time dy-
namical financial systems.

The numerical experiments documented in this section
were performed with Python 3.10.4. All the programs writ-
ten for real-world data reading, synthetic data generation, and
sparse model identification as part of this project are available
at15.

The numerical simulations described in this section were
conducted on an Ubuntu 18.04.6 LTS server system. This sys-
tem operates on a virtual machine within Hyper-V, equipped
with 16 vCores of an Intel(R) Xeon(R) Gold 6238 CPU, run-
ning at 2.10 GHz (2095 MHz), and with 64 GB of RAM.
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Algorithm B.1 RRC Model: RRC model identification

Data: Σx
N = {xt}T

t=1,Σ
y
N = {yt}T

t=1 ⊂ Rn

Result: OUTPUT COUPLING AND COMPRESSION MATRICES:
Ŵ ,W̃ ,Rp,L(n)

1. Choose or estimate the lag value L using auto-correlation
function based methods

2. Set a tensor order value p

3. Compute compression matrix Rp,L(n) applying Algorithm
A.2

4. Compute matrices:

H0 := H(0,p)
L (Σx

T )

H1 := H(1)
L (Σ

y
T )

5. Approximately solve:

Ŵ
(
Rp,L(n)H0

)
= H1

for Ŵ applying Algorithm A.1

return Ŵ ,Rp,L(n)

To asses prediction errors for the experiments considered
in the following sub-sections, we will use a root-mean-square
error estimate determined for any given vector time series
sample ΣT (x) := {x(t)}1≤t≤T ⊂Rn and the set of predictions
ΣT (x̂) := {x̂(t)}1≤t≤T determined by some model under con-
sideration by the following expression.

RMSE(x, x̂) :=
1√
nT

∥∥∥H(1)
1 (ΣT (x))−H(1)

1 (ΣT (x̂))
∥∥∥

F
(V.1)

A. Sparse autoregressive reservoir computers for dynamical
nonlinear financial system behavior identification

In this section, we focus on conducting numerical simu-
lations to examine the behavior of a financial system mod-
eled by a nonlinear dynamical system. These simulations aim
to explore the intricate relationships among the interest rate
(IR), investment demand (ID), and price index (PI) under two
distinct scenarios. The governing equations of the model are
as follows:

ẋ1 = x3 +(x2 − s)x1,

ẋ2 = 1− cx2 − x2
1,

ẋ3 =−x1 − ex3,

x1(0) = x0,x2(0) = y0,x3(0) = z0. (V.2)

Here, x1, x2, and x3 denote the interest rate, investment de-
mand, and price index, respectively.

As observed in2, systems of the form (V.2) can exhibit,
among others behavior types, chaotic and eventually approx-
imately periodic dynamic behavior depending on the config-

uration of parameters and initial conditions considered for
(V.2).

1. Chaotic behavior identification

For s = 3,c = 0.1,e = 1, let us consider the initial condi-
tions x0 = 2,y0 = 3,z0 = 2. For this configuration, one can ob-
tain synthetic time series data Σ12000 ⊂R3 obtained by apply-
ing a fourth-order adaptive numerical integration method to
(V.2) for the configuration determined by the previous choice
of parameters, obtaining an orbit’s samples set Σ12000 whose
elements are uniformly distributed with respect to the time
interval [0,120].

The training orbit’s data set corresponding to the first 50%
of the data in Σ12000, together with the remaining data used
for model validation, are illustrated in Figure 1. The factor-

Figure 1: Training orbits data (left), validation orbits data
(right). The green line corresponds to validation data, and
the red dotted line corresponds to the model’s predictions.

ization for the output coupling matrix W = ŴR determined
by Theorems III.6 and III.7 are illustrated in Figure 2.

Figure 2: Matrix factors Ŵ (top-left) and R (top-right),
output coupling matrix W = ŴR (bottom).
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2. Eventually approximately periodic behavior identification

For s = 0.5,c = 0.1,e = 0.1, let us consider the initial con-
ditions x0 = 1,y0 = 1,z0 = 1. For this configuration, one can
obtain synthetic time series data Σ12000 ⊂ R3 obtained by ap-
plying a fourth-order adaptive numerical integration method
to (V.2) for the configuration determined by the previous
choice of parameters, obtaining an orbit’s samples set Σ12000
whose elements are uniformly distributed with respect to the
time interval [0,120].

The training orbit’s data set corresponding to the first
6.67% of the data in Σ12000, together with the remaining data
used for model validation, are illustrated in Figure 3. The fac-

Figure 3: Training orbits data (left), validation orbits data
(right). The green line corresponds to validation data, and
the red dotted line corresponds to the model’s predictions.

torization for the output coupling matrix W = ŴR determined
by Theorems III.6 and III.7 are illustrated in Figure 4.

Figure 4: Matrix factors Ŵ (top-left) and R (top-right),
output coupling matrix W = ŴR (bottom).

3. Learning interest rates with sparse regressive reservoir
computers

In this section, for financial systems described by (V.2) we
will consider the problem corresponding to the identification
and simulation of the interest rate signals x1, when the signals
x2,x3 are known.

The models considered in this section are determined by
(III.6), (III.14) and (III.15), and can be described by expres-
sions of the form:

[
x̂1(t −1)

x̂1(t)

]
:= ŴR2,2(2)ð2


x2(t −1)

x2(t)
x3(t −1)

x3(t)


 (V.3)

The first case under consideration corresponds to the iden-
tification of the interest rate when the system described by
(V.2) exhibits chaotic behavior, the signals and model param-
eters corresponding to this system identification process are
illustrated in Figure 5.

Figure 5: Chaotic interest rate identification.

When a financial system described by (V.2) exhibits an
eventually periodic behavior, one can use models of the form
(V.3) to learn the behavior of the interest rates, the related
signals and model parameters are illustrated in Figure.

Figure 6: Periodic interest rate identification.

The computational setting used for all the experiments per-
formed in this section is documented in the Python 3.10.4
program FDSExperiment.py in15 that can be used to repli-
cate these results.
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B. Forecasting and Assessing Financial Margin Dynamics for
Honduran Commercial Banks with structured SRRC Models

In Honduras, the banking system plays a crucial role in
the country’s economy by serving as a financial intermedi-
ary. It facilitates the flow of financial resources from savers
to borrowers among different economic agents. The oper-
ational efficiency of banks in this intermediation process is
evident through lower costs in resource allocation. This ef-
ficiency positively influences savings, investments, and ul-
timately the country’s economic performance. Conversely,
inefficiency in allocating resources, characterized by high in-
termediation costs, can hinder financial deepening and thus
impede economic growth.

The financial system is continually evolving due to tech-
nological advances, growing competition, and the modern-
ization of financial transactions. Despite these changes, the
primary function of banks remains the intermediation of fi-
nancial resources. This enduring role underscores the impor-
tance of banks in managing the flow of funds between differ-
ent economic agents, crucial for sustaining the dynamics of
the economy.

Considering the impact of the financial margin on both
banks’ pricing and risk-taking, it is evident that this margin
influences not just the distribution of resources but also mar-
ket competitiveness1. As a result, the evaluation and analysis
of the financial intermediation margin, employing advanced
methods and techniques, have become pivotal in banking su-
pervision. This focus allows for the strengthening of the reg-
ulatory framework, enhancement of supervisory processes in
risk management, and the formulation and implementation of
policies aimed at boosting the competitiveness and efficiency
of the banking system.

The financial intermediation margin is often used as an ef-
ficiency indicator in banking activities. In accordance with
this study, the margin is defined as the difference between the
interest rates banks charge for lending to various agents and
the rates they offer on the deposits they receive. This spread
essentially reflects the cost efficiency of a bank in managing
its lending and deposit activities.

In this study, to obtain more precise estimates of the rates
charged and paid by banking institutions4, synthesized sig-
nals were used, derived from anonymized data. These were
obtained by calculating the financial intermediation margin
using the monthly financial statements of 15 commercial
banks, emphasizing ex-post rates. The margin was calculated
as the difference between the ratio of financial income to fi-
nancial assets and the ratio of financial expenses to financial
liabilities. This calculation is represented in the following
equation:

ΦΦΦ(t)[i] =
I f (t)[i]
A f (t)[i]

− G f (t)[i]
P f (t)[i]

(V.4)

Where:

• I f (t)[i]/A f (t)[i] represents the financial income to fi-
nancial assets for bank i at step t, and

• G f (t)[i]/P f (t)[i] represents the financial expenses to
financial liabilities for bank i at time t.

It is important to recognize that high levels of the financial in-
termediation margin can indicate market inefficiency, result-
ing in elevated intermediation costs and discouraging savings
and investment activities. However, it should also be noted
that reductions in the margin do not automatically signify ef-
ficiency improvements11. Moreover, increased levels of the
intermediation margin may be indicative of systemic issues,
such as limited competition, perceived credit risk, and ineffi-
ciencies in operating costs12.

Let us consider the synthesized time series data Σ80(ΦΦΦ) :=
{ΦΦΦ(t) : 0 ≤ t ≤ 79}, based on privacy-protecting and
behavior-preserving transformations of the anonymized fi-
nancial margins dynamics data of 15 Honduran commercial
banks. Where for each t, the i-th entry ΦΦΦ(t)[i] of each vector
ΦΦΦ(t) corresponds to the financial margin at time-step t of the
i-th bank.

Let us consider the sample Σ36(ΦΦΦ) := {ΦΦΦ(t) : 0 ≤ t ≤ 35},
and let us write C36(ΦΦΦ) to denote the Spearman’s correlation
matrix corresponding to Σ36(ΦΦΦ) represented graphically with
the heat map that is illustrated in Figure 7.

Figure 7: Heat map corresponding to C36(ΦΦΦ) (left),
relational graph G36(ΦΦΦ)) := (VG,EG) (right).

Let G36(ΦΦΦ)) := (VG,EG) denote the relational graph illus-
trated in Figure 7, that corresponds to the adjacency matrix
A36(ΦΦΦ) whose i, j-entries A36(ΦΦΦ)[i, j] are determined by the
i, j-enries C36(ΦΦΦ)[i, j] of the correlation matrix C36(ΦΦΦ), ac-
cording to the rule:

A36(ΦΦΦ)[i, j] :=

{
1, |C36(ΦΦΦ)[i, j]| ≥ ̂|C36(ΦΦΦ)|
0, |C36(ΦΦΦ)[i, j]|< ̂|C36(ΦΦΦ)|

(V.5)

where ̂|C36(ΦΦΦ)| denotes the median of the absolute values of
the entries of C36(ΦΦΦ).

One can apply the techniques in6,9 to identify the dynamic
factors based on the spectral decomposition of C36(ΦΦΦ) that
can be used to explain more than 90% of the variation of the
financial margins time series data under consideration.
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1. Dynamic factors and sparse autoregressive reservoir
computers

For the particular case considered in this section, it is pos-
sible to identify one dominant dynamic factor {ϕ(t) : 0 ≤ t ≤
79} that explains more than 90% of the variation of the finan-
cial margins time series data Σ80(ΦΦΦ), and its dynamics and
contribution to the dynamic behavior of Σ80(ΦΦΦ) can be ap-
proximately identified using a combination of SRRC models
that extends the ideas presented in14, and is determined by the
device depicted in the diagram:

ΣΣΣ

ΘΘΘ1

ΘΘΘ2

ϕ̂(t +1)
ΩΩΩG

Φ̂ΦΦ(t +1)

ϕϕϕL(t)

(V.6)
Where ΘΘΘ1 and ΘΘΘ2 are SRRC models with embedding degree
1 and 2, respectively, trained using the sample Σ36(ΦΦΦ) to ap-
proximately identify the mapping ΘΘΘ(ϕϕϕL(t)) = ϕ(t +1).

The block ΩΩΩG can be identified using a sample Σ43(φφφ) :=
{φφφ(t) : 0 ≤ t ≤ 42}, where the i-th component φφφ(t)[i] of each
φφφ(t) corresponds to an estimate of ϕ(t + 1) obtained by ap-
plying the i-th model ΘΘΘi to ϕϕϕL(t), for i = 1,2.

To identity the model block ΣΣΣ one needs to solve a struc-
tured matrix equation of the form:

Ŝ

 | |
φφφ(0) · · · φφφ(42)
| |

=
[
ϕ(0) · · · ϕ(42)

]
(V.7)

for Ŝ. And to identify the model block one needs to solve the
structured matrix equation:

GWŜ

 | |
φφφ(0) · · · φφφ(42)
| |

=

 | |
ΦΦΦ(0) · · · ΦΦΦ(42)
| |

 (V.8)

for G. Here, the matrix W has been computed as part of the
dynamic factor identification process, and the structure of the
matrix G is determined by the relational graph G36(ΦΦΦ)), in
the sense that G has to satisfy (V.8) and the constraint:

A36(ΦΦΦ)⊙G = G

The graphical representation of the identified coupling ma-
trices corresponding to the model described in (V.6) are pre-
sented in Figure 8.

The identified dynamic factor is illustrated in Figure 9.
From the 15 financial margins dynamics of commercial

banks that have been identified using model (V.6), three have
been chosen for the visualization of the corresponding resid-
ual error distributions in Figure 10.

C. Regressive identification of financial margins signals

The models of the form (III.14) can also be used to learn
the relation betwwen the behavior of the financial margin sig-
nal ΦΦΦ(t)[i] of a given bank i, and the financial margins signals
of all other banks except the i-th bank.

Figure 8: Output coupling matrix decompositions
corresponding to: model ΘΘΘ1 (top), model ΘΘΘ2 (middle), and

the output coupling matrix G for the model block ΩΩΩG.
(bottom)

Figure 9: Identified dynamic factor. The blue line
corresponds to training data, the green line to reference data,
and red dashed line to the identified dynamic behavior data.

For the simulations documented in this section we
have considered the financial margins signals ΦΦΦ(t)[1] and
ΦΦΦ(t)[15], the SRRC models used for their identification are
described as follows.

[
ΦΦΦ(t −1)[1]

ΦΦΦ(t)[1]

]
:= ŴR2,2(14)ð2




ΦΦΦ(t −1)[2]
ΦΦΦ(t)[2]

...
ΦΦΦ(t −1)[15]

ΦΦΦ(t)[15]




[
ΦΦΦ(t −1)[15]

ΦΦΦ(t)[15]

]
:= ŴR2,2(14)ð2




ΦΦΦ(t −1)[1]
ΦΦΦ(t)[1]

...
ΦΦΦ(t −1)[14]

ΦΦΦ(t)[14]


 (V.9)
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Figure 10: Identified financial margin dynamics for three
commercial banks (left), the corresponding residual error
densities; where the bars represent the empirical densities,

and the blue and green lines correspond to the kernel density
estimate and normal approximation of the error densities,

respectively (right).

For each t ≥ 2, let us denote by x(t) the vector output signal
in R435 determined by R2,2(14) and ð2 for any suitable input
signal u(t) ∈ R28, at time step t, according to the following
expression.

x(t) := R2,2(14)ð2(u(t)) (V.10)

The approximation errors and model parameters correspond-
ing to this system identification processes are illustrated in
Figure 11.

Figure 11: Financial margins identification.

The data and modeling techniques discussed in these sec-
tions reveal that within the Honduran commercial banking
system, there is a banking institution with one of the high-
est intermediation margins. However, this institution also ex-
hibits the second highest default rate. This situation arises
from the specific market segment in which the institution en-
gages in credit placement, characterized by a higher credit

risk.
The institution in question, due to its perception of risk,

sets notably higher active interest rates compared to other
banks in the system. Conversely, the bank with the lowest
rate of non-performing loans has one of the smallest financial
margins in the commercial banking system.

Moreover, in line with one of the postulates of post-
Keynesian theory3, which posits that credit placement by
commercial banks is driven not by the availability of savings
but by the anticipated profitability of companies that ensures
repayment of the loans, it becomes clear that a primary goal
of Honduran banks, akin to any business, is the maximization
of profits.

Aligned with the aforementioned insights, high financial
intermediation margins in the Honduran banking sector could
indicate inefficiencies and an accumulation of risks. Consid-
ering the profit expectations of the institutions, the financial
margin needs to be sufficiently large to cover operating ex-
penses and achieve the desired profit level.

Banks, aiming for higher returns, often extend credit to sec-
tors of the economy associated with higher risk levels. This
increased risk perception leads to higher interest rates, sub-
sequently elevating the cost of loanable funds. This situation
particularly affects those banks whose deposit base is insuf-
ficient to satisfy credit demand, compelling them to rely on
interbank loans, which in turn escalates their financial costs.

This combination of factors influences the approximate
synchronization that one can observe for the financial margins
of commercial banks in the Honduran financial system. This
is indicative of a dominant dynamic factor explaining more
than 90% of data variation. In terms of competition, banks
with the largest market shares in both loans and deposits, ac-
counting for over 80% of the market, set interest rates based
on their profit expectations and operating expenses, consid-
ering the monetary policy stance. This behavior is noted by
other banks, compelling them to emulate it. This replication
is primarily driven by an increase in the cost of funding (inter-
bank rates), which is then passed on to the rates to cover the
additional costs, thereby continuing to generate profits and
maintaining their market share in both credit and deposit sec-
tors.

The computational setting used for the experiments per-
formed in this section is documented in the Python program
Python program FinancialMarginsDynamics.py in15 that
can be used to replicate these experiments.

VI. CONCLUSIONS

The results in §III A and §III B in the form of algorithms
like the ones described in §IV, can be effectively used for the
sparse structured identification of financial dynamical mod-
els that can be used to compute data-driven predictive and
prescriptive numerical simulations.

The integration of Sparse Regressive Reservoir Comput-
ing (SRRC) models into the forecasting and assessment of
financial margin dynamics has shown remarkable promise,
especially in contexts with limited training data. The sparse
representations crucial for identifying the models’ parameter
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matrices make SRRC models exceptionally adept at working
with time series that have a relatively low volume of avail-
able training data. This attribute is particularly valuable in
the financial sector, where data scarcity can often be a chal-
lenge. In the Honduran commercial banking sector, for in-
stance, SRRC models have efficiently managed to capture and
analyze the dynamics of financial margins despite the con-
straints of data availability.

From the perspective of regulatory bodies, such as the Na-
tional Commission of Banks and Insurance Companies of
Honduras, the inherent nature of reservoir computing in these
models is a significant advantage. SRRC models are tailored
to capture complex and nonlinear interactions between finan-
cial variables, offering deep insights into the interdependen-
cies and influences within the banking system. This capabil-
ity is crucial for regulatory oversight, as it aids in understand-
ing the subtleties of market behavior and risk factors. The
models provide a robust analytical tool for monitoring, regu-
lation, and policy-making, ensuring that regulatory bodies are
equipped with accurate and comprehensive analyses to over-
see and guide the banking sector effectively.

VII. FUTURE DIRECTIONS

The extension of sparse RRC modeling techniques to
equivariant system identification will be studied in future
communications. Further implementations of the structured
sparse model identification algorithms presented in this doc-
ument to compute data-driven dynamic general equilibrium
models will be the subject of future communications.
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