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Abstract: The investigation reported in this document focuses on identifying systems with
symmetries using equivariant autoregressive reservoir computers. General results in structured
matrix approximation theory are presented, exploring a two-fold approach. Firstly, a comprehen-
sive examination of generic symmetry-preserving nonlinear time delay embedding is conducted.
This involves analyzing time series data sampled from an equivariant system under study.
Secondly, sparse least-squares methods are applied to discern approximate representations of
the output coupling matrices. These matrices play a pivotal role in determining the nonlinear
autoregressive representation of an equivariant system. The structural characteristics of these
matrices are dictated by the set of symmetries inherent in the system. The document outlines
prototypical algorithms derived from the described techniques, offering insight into their prac-
tical applications. Emphasis is placed on their effectiveness in the identification and predictive
simulation of equivariant nonlinear systems.

Keywords: Autoregressive models, equivariant system, parameter identification, least-squares
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1. INTRODUCTION

In the dynamic realm of computational science, reser-
voir computing has emerged as a formidable approach
for system identification and dynamic modeling. Notably,
this machine learning algorithm excels in processing in-
formation from dynamical systems using observed time-
series data, primarily due to its minimal training data and
computational resource requirements. Yet, the traditional
reservoir computing model, reliant on randomly sampled
matrices for its underlying recurrent neural network, faces
challenges from the numerous metaparameters needing op-
timization. Recent strides, particularly in nonlinear vector
autoregression (NVAR), have marked a significant evolu-
tion in reservoir computing by offering efficient alterna-
tives requiring shorter training datasets and less training
time Gauthier et al. (2021).

Building upon these advancements, this paper introduces
an extended autoregressive reservoir computing strategy,
tailored for modeling dynamic systems with inherent sym-
metries. Our work delves into the theoretical underpin-
nings and algorithmic strategies crucial for realizing these
novel reservoir computing architectures. These architec-
tures not only reflect linear and nonlinear autoregressive
vector models but also incorporate symmetry-preserving

equivariant matrix approximation methods, thereby offer-
ing a nuanced approach to equivariant system identifica-
tion and modeling.

Our investigation presents as a main contribution: a strat-
egy that bridges structured matrix approximation meth-
ods with the robustness of autoregressive models. This syn-
ergetic approach, detailed in Section 3, provides a reliable
mathematical solution for identifying dynamic systems
with symmetries accurately and efficiently.

A particularly exciting offshoot of our research is the devel-
opment of a Python-based toolkit for equivariant reservoir
computer model identification. This toolkit embodies the
practical application of concepts discussed in Sections 3
and 4, and is readily accessible for scholarly use.

The practical implications of our structured operator iden-
tification technology are vast and varied, with applications
stretching from the nuanced demands of cyber-physical
systems simulation Yuan et al. (2019) to toxicity predic-
tion Cremer et al. (2023).

To demonstrate the practical application of the proposed
theory, we present a prototype algorithm for the compu-
tation of equivariant autoregressive reservoir computers,
rooted in the methodologies expounded upon in Section



3. This is further brought to life in Section 4, where we
outline the algorithm’s architecture and functionality.

Finally, in Section 5, we present two computational ex-
periments. The first experiment is focused on the identi-
fication of a Hamiltonian system that is characterized by
its inherent symmetries. The second experiment applies
the symmetry-preserving system identification methods
discussed in our study to the realm of finance. Here,
we simulate the ”representation ranking” of five financial
institutions within a given market or portfolio. Inspired
by dynamic ecological models for competitive species, this
approach assigns a score ranging from 0 to 1 to each
institution. The representation ranking measures each in-
stitution’s market participation compared to its peers, pro-
viding a nuanced view of its financial influence and dom-
inance. Furthermore, this methodology offers potential
applications in assessing financial stability, as it captures
the dynamic balance similar to that observed in natural
systems. Through this, the representation ranking not only
reveals the competitive dynamics of each institution but
also hints at their broader implications for market stability,
reflecting their varying positions over time.

2. PRELIMINARIES AND NOTATION

The symbols R+ and Z+ will be used to denote the positive
real numbers and positive integers, respectively. For any
pair p, n ∈ Z+ the expression dp(n) will denote the positive
integer dp(n) = n(np−1)/(n−1)+1. For any finite group
G, the expression |G| will be used to denote the order of
G, that is, the number of elements of G. The symbol 1n

will be used to denote the vector in Rn with all of its
coordinates equal to 1.

Given a vector time series Σ = {xt}t≥1 ⊂ Rn, a positive
integer L and any t ≥ L, we will write xL(t) to denote the
vector:

xL(t) =
[
x
(1)
L (t)⊤ x

(2)
L (t)⊤ · · · x

(n)
L (t)⊤

]⊤
∈ RnL,

with

x
(j)
L (t) =

[
x
(j)
t−L+1 x

(j)
t−L+2 · · · x

(j)
t−1 x

(j)
t

]⊤
∈ RL.

for 1 ≤ j ≤ n, where x
(j)
s denotes the scalar j-component

of each element xs in the vector time series Σ, for s ≥ 1.

The identity matrix in Rn×n will be denoted by In, and we
will write êj,n to denote the matrices in Rn×1 representing
the canonical basis of Rn (each êj,n corresponds to the j-
column of In). Given a matrix X ∈ Rm×n, the expression
∥X∥F will denote the Frobenius norm of X.

For any integer n > 0, in this article, we will identify the
vectors in Rn with column matrices in Rn×1.

Given a matrix A ∈ Rm×n, we write vec(A) to denote
the column vector obtained by stacking the columns of A
according to the following expression

vec(A) =
[
a[1]⊤ · · · a[n]⊤

]⊤
where a[j] denotes the j-column of A for 1 ≤ j ≤ n. For
any x ∈ Rmn we will write vec†m(x) to denote the operation
such that vec†m(vec(A)) = A for any A ∈ Rm×n.

Let A ∈ Rm×n, B ∈ Rp×q, the tensor Kronecker tensor
product A ⊗ B ∈ Rmp×nq is determined by the following
operation.

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB


For any integer p > 0 and any matrix X ∈ Rm×n, we
will write X⊗p to denote the operation determined by the
following expression.

X⊗p =

{
X , p = 1

X ⊗X⊗(p−1) , p ≥ 2

We will also use the symbol Πp to denote the operator

Πp : Rn → Rnp

that is determined by the expression
Πp(x) := x⊗p, for each x ∈ Rn. Given a list A1, A2, . . . , Am

such that for 1 ≤ j ≤ m, Aj ∈ Rnj×nj for some integer
nj > 0. The expression A1⊕A2⊕· · ·⊕Am will denote the
block diagonal matrix

A1 ⊕A2 ⊕ · · · ⊕Am =


A1

A2

. . .
Am

 ,

where the zero matrix blocks have been omitted. Given two
vectors x = [xj ], y in Rm, we will write x ⊙ y to denote
the operation corresponding to their Hadamard product
x⊙y = [xjyj ] ∈ Rm. The group of orthogonal matrices in
Rn×n will be denoted by O(n) in this study.

3. APPROXIMATE EVOLUTION OPERATOR
REPRESENTATION

Let us consider discrete-time dynamical systems deter-
mined by the pair (Σ̂, T ) with Σ̂ ⊂ Rn, where T : Σ̂ → Σ̂
is an evolution operator. Given a finite group G and some
matrix representation (Steinberg, 2012, Definition 3.1.1)

π : G → Gπ ⊂ O(n), g 7→ gπ, the system (Σ̂, T ) is said to
be G-equivariant with respect to π if:

gπT (x) = T (gπx) (1)

for each x ∈ Σ̂ and each gπ ∈ π(G). When it is clear from
the context, an explicit reference to π may be omitted.

Given ϵ > 0, some matrix representation Gπ ⊂ O(n) of a
finite group G, and an orbit of a G-equivariant discrete-
time system to be identified that can be represented by
a vector times series Σ = {xt}t≥1 ⊂ Rn. We will study
the problem of identifying a (generally nonlinear) operator

T̂ : Rn → Rn such that

gxt+1 = T̂ (gxt), (2)

for each 1 ≤ t ≤ τ , each g ∈ Gπ and some prescribed
τ > 0, with xt+1 = T̂ (xt) for each t ≥ 1.

3.1 Equivariant reservoir computers for approximate evolution
operator representation

When for a matrix representation π : G → O(n) of some
given finite group G, we consider the time series data
Σ ⊂ Rn corresponding to an orbit determined by the
difference equation

xt+1 = T (xt), (3)



for some G-equivariant discrete-time system (Σ̂, T ) with
respect to π to be identified. One may need to preprocess
the time series data before proceeding with the approxi-
mate representation of a suitable evolution operator. For
this purpose, given some prescribed integer L > 0, one
can consider the time series DL(Σ) determined by the
expression.

DL(Σ) = {xL(t)}t≥L

For the dilated time series DL(Σ), the previously consid-
ered recurrence relation xt+1 = T (xt), t ≥ 1, induces the
following difference equations

xL(t+ 1) = T̃ (xL(t)), (4)

for t ≥ L. Where T̃ is some evolution operator to be
identified such that

(π(g)⊗ IL)xL(t+ 1) = T̃ ((π(g)⊗ IL)xL(t)) , (5)

for each g ∈ G.

For any p ≥ 1, let us consider the map ðp : Rn → Rdp(n)

for dp(n) = n(np − 1)/(n− 1) + 1, which is determined by
the expression.

ðp(x) :=


Π1(x)
Π2(x)

...
Πp(x)

1

 =


x⊗1

x⊗2

...
x⊗p

1

 (6)

Here, the number p will be called the order of the em-
bedding map ðp. Given integers p, L > 0, an orbit Σ =
{xt}t≥1 ⊂ Rn of an equivariant system with a finite sym-
metry group represented by a set of orthogonal matrices
G ⊂ Rn×n. For a finite sample ΣN = {xt}Tt=1 ⊂ Σ, let us
consider the matrices:

H
(0,p)
L (ΣT ) = [ðp(xL(L)) · · · ðp(xL(T − 1))] (7)

H
(1)
L (ΣT ) = [xL(L+ 1) · · · xL(T )]

The operator identification mechanism used in this study
for dilated systems of the form (4), will be described by
the expression:

T̂ (xL(t)) = Wðp(xL(t)), t ≥ L, (8)

for some matrix W = ŴRp,L(n) ∈ Rn×dp(n) to be
partially determined, with dp(n) = n(np − 1)/(n− 1) + 1.
Building on the operator theoretic techniques and ideas
presented in Rieffel (1980), Maehara and Murota (2011),
Panahi et al. (2021) and Vides et al. (2023), the matrix

Ŵ in (8) can be estimated by approximately solving the
matrix equation

Ŵ (Rp,L(n)H
(0,p)
L (ΣT )) = H

(1)
L (ΣT ). (9)

Where Rp,L(n) is the matrix described by (Vides et al.,

2023, Theorem III.6), and by (4) and (5) Ŵ shall belong
to the linear space of matrices that solve equations of the
form:

∥gj ⊗ ILX −XRp,L(n)Gj∥F = 0, 1 ≤ j ≤ |Gπ| (10)

and where for each 1 ≤ j ≤ |Gπ| the matrix Gj satisfies
the condition

ðp(gj ⊗ ILx) = Gjðp(x) (11)

for any x ∈ RnL. The devices described by (8) are called
equivariant autoregressive reservoir computers (EARC) in
this paper.

3.2 Structured output coupling matrix identification

The solvability of the matrix identification problems de-
scribed by equations (10) and (11) will be studied from a
structured matrix analysis perspective.

Lemma 1. Given an integer p ≥ 1, and a finite group
representation Gπ = {g1, . . . , gN} ⊂ O(n). For each
1 ≤ j ≤ N = |Gπ|, the matrix Gj satisfies the condition

ðp(gj ⊗ ILx) = Gjðp(x)
for any x ∈ RnL, is determined by the expression

Gj := (gj ⊗ IL)⊕ (gj ⊗ IL)
⊗2⊕· · ·⊕ (gj ⊗ IL)

⊗p⊕1. (12)

Proof. By iterating on (Zhan, 2013, Lemma 2.1) we will
have that for any x ∈ RnL and any integers k ≥ 1 and
1 ≤ j ≤ N :

((gj ⊗ IL)x)
⊗k = (gj ⊗ IL)

⊗kx⊗k

= (gj ⊗ IL)
⊗kΠk(x)

Consequently, by (6) it can be seen that ifGj is determined
by (12) we will have that

ðp(gj ⊗ ILx) = Gjðp(x).
This completes the proof.

Given a finite group representation Gπ = {g1, . . . , gN} ⊂
O(n) and a subset of matrix representations {ĝ1, . . . , ĝr} ⊂
Gπ of the generators of G, then a basis for the space of
solutions to equations (10) can be computed by applying
the following lemma.

Lemma 2. Given a subset of matrix representations {ĝ1
, . . . , ĝr} ⊂ Gπ of the generators of a group of sym-
metries G of a G-equivariant system under study whose
output coupling matrix is determined by (9), then a basis
{X1, . . . , XM} for the space of solutions to equations (10)
will be determined by a basis {x1, . . . ,xM} of

ker

 r∑
j=1

K⊤
j Kj

 (13)

according to the rule

Xj = vec†nL(xj), 1 ≤ j ≤ M. (14)

Where

Kj := Iq1 ⊗ (ĝj ⊗ IL)− (G⊤
j Rp,L(n)

⊤)⊗ Iq2 (15)

for each 1 ≤ j ≤ r and some suitable integers q1, q2 ≥ 1.

Proof. Let q1 = nL and q2 be equal to the number of rows
of Rp,L(n) determined by (Vides et al., 2023, Theorem
III.6). Since ĝ1, . . . , ĝr represent generators of the group of
symmetries G, by (Zhan, 2013, Equation (2.10) in §2.2),
(15), and by matrix kernel properties we will have that any
matrix solvent X of the matrix equations (10) satisfies the
following condition.

vec(X) ∈ ker


K1

...
Kr


 = ker

 r∑
j=1

K⊤
j Kj

 (16)

Consequently, given a basis {x1, . . . ,xM} (13) we will
have that vec(X) ∈ span({x1, . . . ,xM}). Therefore, X ∈
span({vec†nL(x1), . . . , vec

†
nL(xM )}) and {vec†nL(x1) , . . . ,

vec†nL(xM )} determines a basis for the space of solutions
to (10). This completes the proof.



Corollary 3. Let us consider the matrix equation (9), and
let us set:

H0 := Rp,L(n)H
(0,p)
L (ΣT ),

H1 := H
(1)
L (ΣT ).

A structured output coupling matrix Ŵ that satisfies (9)
and (10), can be identified using the expression

Ŵ :=

m∑
j=1

cjXj .

Where {X1, . . . , XM} is the basis for the space of solutions
to equations (10) described by Lemma 2, and the coeffi-
cients cj can be obtained by solving the following linear
system of equations[ | |

vec(X1H0) · · · vec(XMH0)
| |

] c1
...

cM

 = vec(H1). (17)

Proof. This is can be verified by applying the operation
vec to both sides of (9), and is a consequence of linear
space bases properties and the definition of the operation
vec, as it can be seen from its definition that the operation
vec is linear. This completes the proof.

4. ALGORITHM

In this section, we focus on the applications of the struc-
tured matrix approximation methods presented in §3, to
reservoir computer models identification for equivariant
dynamical systems. More specifically, we propose a proto-
typical algorithm for general purpose equivariant system
identification, that is described by Algorithm 1.

Algorithm 1: EARCModel: EARC model identifi-
cation

Data: ΣT = {xt}Tt=1 ⊂ Rn,Gπ ⊂ O(n).

Result: Ŵ ,Rp,L(n)
0: Choose or estimate the lag value L using

auto-correlation function based methods.
1: Set a tensor order value p.
2: Compute compression matrix Rp,L(n) applying

Algorithm A.2 in Vides et al. (2023).
3: Compute matrices:

H0 := H
(0,p)
L (ΣT )

H1 := H
(1)
L (ΣT )

4: For each gj ∈ Gπ, compute the matrix Gj such that
ðp(gj ⊗ ILx) = Gjðp(x) for any x ∈ RnL.

5: Compute a basis {X̂1, . . . , X̂m} for the space of
solutions to equations:

gj ⊗ ILX −XRp,L(n)Gj = 0n, 1 ≤ j ≤ |Gπ|
6: Compute the coefficients that approximately solve:

m∑
j=1

cjX̂j (Rp,L(n)H0) = H1

applying Algorithm A.1 in Vides et al. (2023).

7: Set Ŵ :=
∑m

j=1 cjX̂j .

return Ŵ ,Rp,L(n)

5. COMPUTATIONAL EXAMPLES

In this section we will present some numerical simulations
computed using the SPORT toolset available in Vides
(2023), which was developed as part of this project, the
toolset consists of a collection of programs written in
Python that can be used for sparse identification and
numerical simulation of dynamical systems.

The numerical experiments documented in this section
were performed with Python 3.8.10. All the programs
written for synthetic data generation and sparse model
identification as part of this project are available at Vides
(2023).

5.1 Identification of a Hamiltonian system with symmetries
using EARC

Let us consider a Hamiltonian system determined by the
following initial value problem.

dq

dt
= p3 − p, (18)

dp

dt
= q3 − q,

q(0) = 1, p(0) = 0

As observed in (Sinha et al., 2020) the system (18) is K4-
equivariant. For the configuration used for this experiment,
the matrix representation Gπ(K4) of the corresponding
group of symmetries

K4 =
〈
r1, r2

∣∣∣r21 = r22 = (r1r2)
2
= e

〉
is determined by the following assignments.

r1 7→ r1,ρ =

[
0 1
1 0

]
r2 7→ r2,ρ =

[
−1 0
0 −1

]
The synthetic signals corresponding to the data sample
Σ600 ⊂ R3 that will be used for system identification
have been computed with an explicit time integration
scheme, using lsoda from the FORTRAN library odepack
via the Python function odeint, with the Python program
HamiltonianSystem.py in Vides (2023). The model was
trained using an embedding map ðp of order p = 3, with
15% of the synthetic reference data.

The reference synthetic signal data and the corresponding
identified signals are illustrated in Figure 1.

For this experiment we have considered the following
configuration: a lag value L = 5, an embedding order
p = 3. To verify that the output coupling matrix Ŵ
identified for this example using Algorithm 1 satisfies the
equivariant matrix constraints (11), we can compute the
number:

∆EM :=
∑

gj∈Gπ(K4)

∥∥∥gj ⊗ I5ŴR3,5(2)− ŴR3,5(2)Gj

∥∥∥
F

Where each Gj is determined by each gj according to (12).
For this experiment, we obtain the following value:

∆EM = 4.1434207423062456× 10−15.



Fig. 1. 2D graphical representation of: training data (left),
predicted behavior (right).

The computational setting used for the experiments per-
formed in this section is documented in the Python pro-
gram HamiltonianSystemID.py in Vides (2023) that can
be used to replicate these experiments.

5.2 Identification of a financial competition system with
symmetries using EARC

In this experiment, we explore a specific aspect of the
commercial banking sub-system, which is part of a larger
financial system supervised by a regulatory body. The
focus of this study is on the dynamic system that tracks
the ”representation ranking” of a selected group of banks.
This ranking is a numerical score, ranging from 0 to 1,
which quantifies each bank’s participation in relation to
others within the same market or portfolio. A score of
1 indicates a leading position in the market or portfolio,
while a score of 0 denotes no market presence.

To compute the representation ranking, we first calculate
each bank’s total participation in the market or portfolio
under consideration. We then identify the bank or banks
with the highest market participation. The participation
of each bank is divided by this maximum value, yielding
a score between 0 and 1. This scoring system ensures
that the rankings are consistent and comparable across
various markets or portfolios, thereby providing a clear
and quantifiable measure of each bank’s relative market
dominance and competitive stance.

Furthermore, from the perspective of a regulatory body,
the representation ranking model is crucial for assessing
financial stability. Banks with higher representation rank-
ings generally are systemically important institutions rele-
vant to the stability of the financial system under consider-
ation. Regulatory bodies can use these models to monitor
the market influence and competitive distortions, identify
principal peers or competitive groups, and anticipate the
accumulation of potential risks. By doing so, they can take
proactive measures aimed at preventing and mitigating
the impact of failures in banks with higher dominance. In
this way, representation ranking serves as a valuable tool
for comprehending competitive dynamics and takes on a
pivotal role in the development of a proactive regulatory
framework that enhances resilience and ensures the overall
stability of the financial system.

Let us consider a discrete-time financial competition sys-
tem for 5 banks, characterized by the following recurrence

relation:

p(t+ 1) = p(t) + r⊙ p(t)⊙ (15 −Np(t)) (19)

In this model, the i-th component p(t)[i] of each vector
p(t) is an approximate representation for the value at
time step t, of the discrete-time signal determined by
the smoothed evolution of the representation ranking of
bank i in a given market or portfolio, as assessed by some
regulating body. The matrix N, is defined as:

N =


1 1.1 0 0 1
1 1 1.1 0 0
0 1 1 1.1 0
0 0 1 1 1.1
1.1 0 0 1 1


and represents the interaction between banks of the system
under consideration. It corresponds to the expected inter-
action network N = (VN , EN ) of the 5 banks considered
in this experiment. The corresponding directed graph is
illustrated in Figure 2.

Fig. 2. Expected interaction network N = (VN , EN ).

When all components of the growth vector r are equal, the
system becomes Z5-equivariant. For the configuration used
for this experiment, r = 0.37615 and the matrix represen-
tation Gπ(Z5) of the corresponding group of symmetries
Z5 = ⟨r|r5 = e⟩ is determined by the following assignment.

r 7→ rρ =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0


The synthetic signals corresponding to the data sample
Σ425 ⊂ R5 that will be used for system identification have
been computed according to (19). The model was trained
using an embedding map ðp of order p = 2, with less than
7.3% of the synthetic reference data.

For this experiment, we have considered the following
configuration: a lag value L = 1, and an embedding order
p = 2. To verify that the output coupling matrix Ŵ
identified for this example using Algorithm 1 satisfies the
equivariant matrix constraints (11), we can compute the
number:

∆EM :=
∑

gj∈Gπ(Z5)

∥∥∥gjŴR2,1(5)− ŴR2,1(5)Gj

∥∥∥
F

Where each Gj is determined by each gj according to (12).
For this experiment, we obtain the following value:



∆EM = 2.083018984548649× 10−14.

The reference synthetic signal data and the corresponding
identified signals are illustrated in Figure 3.

Fig. 3. Representation ranking evolution: training data
(blue solid lines), reference behavior data (solid green
lines), predicted behavior (dashed red lines).

The computational setting used for the experiments per-
formed in this section is documented in the Python pro-
gram Python program FinancialCompetitionModel.py
in Vides (2023) that can be used to replicate these exper-
iments.

6. DATA AVAILABILITY

The Python programs that support the findings of this
study are openly available in the SPORT repository,
reference number Vides (2023).

7. CONCLUSION

In conclusion, this study has demonstrated the effec-
tiveness of equivariant autoregressive reservoir computers
(EARCs) in identifying systems with inherent symme-
tries. Our comprehensive analysis revealed that EARCs
can successfully capture the underlying dynamics of such
systems, preserving their symmetrical properties. The use
of sparse least-squares methods further enhanced the abil-
ity to discern approximate representations of the output
coupling matrices, offering a novel approach to equivariant
system identification. These findings not only deepen our
understanding of equivariant systems but also open up
new possibilities for the application of EARCs in various
scientific and engineering domains. This work lays a foun-
dational stone for future research, where the exploration
of more complex symmetries and the integration of our
methodologies into real-world scenarios could lead to inter-
esting developments in the study and control of dynamical
systems with symmetries.
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